Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

نویسندگان

  • Nick J Hardman-Mountford
  • Luca Polimene
  • Takafumi Hirata
  • Robert J W Brewin
  • Jim Aiken
چکیده

Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions

To fill temporal gaps in iron-enrichment experimental data and gain further understanding of marine ecosystem responses to iron enrichments, we apply a fifteen-compartment ecosystem model to three iron-enrichment sites, namely SEEDS (the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study; 48.5 N, 165 E) in the western North Pacific, SOIREE (the Southern Ocean Iron RElease Experiment...

متن کامل

Effects of nutrient enrichment and shading on sediment primary production and metabolism in eutrophic estuaries

The impact of anthropogenic eutrophication on the productivity and metabolism of estuarine sediments has received relatively little attention. In this study, we investigated the separate and combined effects of decreased light availability and sediment nutrient enrichment, 2 of the most important impacts of anthropogenic eutrophication, on sediment primary production and metabolism in 2 eutroph...

متن کامل

Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.

Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiment...

متن کامل

Anthracene degradation by an oligotrophic bacterium isolated from refinery soil

Anthracene is a widespread environmental pollutant with carcinogenic and genotoxic properties. Biodegradation is a simple, cost-effective and safe technique to clean-up contaminated environments. The aims of this study are isolation and characterization of an oligotrophic bacterium with the ability to degrade anthracene and the assessment of in vitro biodegradation process. For this purpose pet...

متن کامل

Interactions of the iron and phosphorus cycles: A three-dimensional model study

[1] We use an ocean circulation, biogeochemistry, and ecosystem model to explore the interactions between ocean circulation, macroand micro-nutrient supply to the euphotic layer, and biological productivity. The model suggests a tight coupling between the degree of iron limitation in the upwelling subpolar and tropical oceans and the productivity of the adjacent subtropical gyres. This coupling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 89  شماره 

صفحات  -

تاریخ انتشار 2013